自由なデータの重要性

Pocket

先日、NEologd Casual Talksというイベントに参加してきました。mecab-ipadicに新しいエントリーを追加するmecab-ipadic-neologdに関するイベントでした(Togetterまとめ)。

その中で改めて感じたのは、自由なデータの重要性です。イベントでは「言語資源」という観点でのデータの重要性が語られていました。形態素解析器の辞書として、継続的に更新・リリースがなされているのはNEologd以外ほとんどないという指摘がありました。

自分も2012年にSoftware Freedom Dayの国内イベントで「自由なデータ」という題で発表をしました。

今になって改めてこの資料を見ると、現在は若干状況が変化している部分もあります。NEologdの出現は、まさしくその一つです。

また、日本語の文章チェッカーとしてtextlintという実装の日本語ルールを作成・公開している人がいます。これまでLanguageToolに若干のルールをコミットしてきましたが、textlintのほうがかなり充実している感じです。

最近は機械学習をやってみたりしているのですが、これもまさにデータの質がかなり重要な領域です。変なデータを元に学習すると、そもそも学習が収束しなかったり、期待しない結果を返すモデルができてしまったりします。この領域でも、チュートリアルに使われる定番のデータセットが公開されています(MNIST, CIFAR-10等)。

最近、自分も画像分類タスクのテストのために作ったデータセットはあるので、なんとか公開できる形にできないかと考えています。実データはInstagramにあるもので、個々の画像のライセンスを確認しないまま集めて分類したのですが、画像URLの一覧という形なら問題なく配布できると思います。オライリー「実践 機械学習システム」でも感情分析用のツイートデータを人力で分類したもののID一覧から実データを取得する、という方法が取られていました。

 

実際に自分でデータの分類をやってみると、「どこまでをこの分類に含めるべきか」という根源的な問題を実感できます。実際、単純に検索しただけだと「明らかにおかしい」というものから「これはどうなんだろう」というものも出てきます。

この点について、先日の発表の中で印象的だったのが片山さんの「ファッションが大好きなので無限に洋服の文字列データを眺めるのが楽しかった」という部分でした。特定のドメインのテキストでも、きっと同じような感覚があるのだろうとなんとなく感じています。

ともあれ、公開できる形になったら、改めて告知したいと思います。